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Abstract
We report on a theoretical study of the quantum interference behaviour of
electron flow from a double-slit device made from a semiconductor two-
dimensional electron gas (2DEG) system with the slit widths in the quantum
conductance regime. The device consists of a double slit and a single slit in a
configuration where the single slit is placed on the source side of the double
slit. The wavefunctions of electrons passing through the double-slit structure
are calculated on the basis of a scattering matrix method. It is found that
including a single slit between the double slit and the source contact in the
device is essential for the observation of interference fringes of electron flow
in a double-slit experiment with a 2DEG. When only the lowest mode is open
for conduction in the individual slits, the interference patterns of electron flow
from the double slit resemble the results of a conventional Young’s double-
slit experiment well. When several modes are open for conduction in the
individual slits, the interference patterns of electron flow from the double slit
are dominated by the interference of electrons flowing through the highest index
open modes in the slits. As a result of the existence of multiple-lobe structures
in electron flow from these high index open modes, these interference patterns,
in general, show rather complex structures. We also discuss the characteristics
of interference patterns in the near- and far-field regimes and the dependence of
the fringe spacing on the slit distance in the double slit.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most beautiful experiments in physics is the interference of electrons in a Young’s
double slit [1–3]. In such an experiment, single electrons interfere with themselves to produce
the famous interference pattern known in the double-slit experiment for light [2, 3]. It was thus
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confirmed that electrons possess wave-like properties. For a free electron, the associated wave
has a wavelength related to the magnitude of the momentum, p, of the electron by λ = h/p. In
analogy to the optical Young’s experiment, the interference pattern of electrons in the double-
slit experiment can be described by a simple formula derivable by considering that the electron
wavefronts in the two slits behave like two stripes of an infinite number of point sources
with the same wave intensity and phase and, thus, the electron wave has a uniform front on
leaving from the two slits. Here, the quantum confinement imposed by the slit boundaries on
the electron wave is assumed to have no effect on the interference phenomenon. This is a
good assumption for the reported electron double-slit experiments [1–3], in which the lateral
width of the slits is several orders of magnitude larger than the wavelength of the electrons.
However, experiments on the electron transport through quantum point contacts made from
semiconductor heterostructures have shown that the electron wave propagates through a narrow
opening via certain lateral quantum states and thus has a spatially nonuniform profile of the
wave intensity when emitting from the opening [4–6]. Does this quantum effect give observable
new interference phenomena in double-slit experiments for electrons? This essential question
would also be asked in quantum optics experiments.

Experimentally, the problem could be studied by imaging the wavefunctions of electrons
flowing from a double slit defined in a two-dimensional electron gas (2DEG) system made with
a semiconductor heterostructure. A variety of scanning probe microscope (SPM) techniques
have been developed for imaging electron wavefunctions in recent years [4–19]. These
techniques have been successfully applied to image, e.g., coherent electron flow from a
quantum point contact [4–7], electron wavefunctions in carbon nanotubes [10, 11], single-
electron charge states in nanotube quantum dots [12], localized electron states and resonances
in the quantum Hall regime [13, 18], scarred wavefunctions in quantum billiards [16], and
fine interference fringes in an imaging electron interferometer [19]. However, no imaging
experiment on electron flow from a double-slit structure made from a 2DEG has been reported.
It should be noted that an observation of electron interference in a double slit made from a
semiconductor heterostructure was recently reported [20]. However, the electron flow was
made in this experiment along the vertical direction and, therefore, no electron flow pattern
could be imaged.

In this work, we present a theoretical study of the effects of modal structures on electron
interference by quantum-mechanical simulation of coherent electron flow from a double-slit
structure made from a 2DEG system. The device is assumed to consist of a double slit and
a single slit with the single slit being placed on the electron source side of the double slit.
The single and double slits are connected, respectively, with the electron source and collector
contacts by two wide 2DEG regions. The wavefunctions of electrons flowing through the device
are calculated. To simulate a double-slit experiment made in a 2DEG, a model device with
sufficiently large dimensions needs to be assumed (e.g., ∼5 μm was assumed for the lateral
size of the device studied in this work). Thus, the calculations are numerically very demanding.
In this work, we carry out these wavefunction calculations with the use of a scattering matrix
method [21, 22]. We find that introducing a single slit in front of the double slit is essential for
the observation of a fine interference pattern of electron flow from the double slit. We also find
that when only the lowest mode is open for conduction in the individual slits, the interference
patterns of electron flow from the double slit resemble the results of a conventional Young’s
double-slit experiment well. When several modes are open for conduction in the individual slits,
the interference patterns of electron flow from the double slit are dominated by the interference
of electrons flowing through the highest index open modes in the slits and, in general, show
rather complex structures, as a result of the existence of multi-lobe structures in the electron
flow from these high index open modes.
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Figure 1. (a) Schematic diagram of the electron double-slit device studied in this work. The device
consists of a double slit and a single slit. The single slit is placed on the source contact side of
the double slit in order to create a coherent source of electrons with similar incident conditions.
(b) Calculated conductance of the double slit (a structure without the presence of the single slit in
(a)) as a function of the slit width ws. The device parameters used in the calculation are lateral
width of the 2DEG regions W = 5 μm, slit length Ls = 800 nm, slit distance Ds = 500 nm, radius
of quarter-circles in slit corners Rs = 200 nm, and electron Fermi energy EF = 8.6 meV.

The rest of the paper is organized as follows. In section 2, the model and scattering matrix
method employed in this work are briefly described. In section 3, we present and discuss the
calculated interference patterns of electron flow from the double-slit device with different slit
widths and thus different numbers of open modes in the slits. Here we will also discuss the role
of the single slit placed in front of the double slit in the Young’s interference experiments for
electrons. Finally, the paper is summarized and concluded in section 4.

2. Model and scattering matrix method

The system under consideration is assumed to be made from a 2DEG defined in a
semiconductor heterostructure with growth direction along the z axis. It is further assumed
that the 2DEG is bounded and has a width W in the transverse y direction, and the electron
transport takes place along the longitudinal x direction. In the calculations, the width W is
chosen to be large enough that the transverse boundaries have negligible effects on the results
of calculations. The structure of the electron double-slit system considered, made in the 2DEG,
is schematically shown in figure 1(a), where the double slit is modelled by two identical slits in
parallel. It should be noted that in an electron double-slit Young’s experiment, it is important
that the electrons which pass through the double slit are coherent and have the same initial
injection condition. In practice, this can approximately be realized by sending electrons toward
the double slit from a single point-like source. In the present work, we model this situation
by placing a single slit in front of the double slit. We will show that introducing such a single
slit in a position between the electron source contact and the double slit is essential for an
electron double-slit experiment with a 2DEG. This is because there is no coherence between
electrons emitted from the source contact and the interference pattern will be smoothed away
by an averaging of the contributions from individual electrons injected from the source contact
with different initial conditions.

The Schrödinger equation of an electron in the system considered with energy ε can be
written, under the effective mass approximation, as{

− h̄2

2m∗

[
∂2

∂x2
+ ∂2

∂y2

]
+ Vc(y) + VE(x, y)

}
�(x, y) = ε�(x, y), (1)
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where Vc(y) describes the transverse confining potential of the wide 2DEG and VE(x, y) the
potential which defines the double slit and the single slit. In the study of the electron flow
problem in the system, the Schrödinger equation needs to be solved at a given energy ε for
all possible eigensolutions including both propagating and evanescent states. This clearly is a
numerically demanding task. Here we will overcome the difficulty by employing a scattering
matrix method [21, 22].

In the scattering matrix method, the Schrödinger equation is solved by discretizing the
system along the x direction into a large number N of transverse stripes, such that the potential
VE(x, y) in each stripe can be considered to be independent of the coordinate x and can
therefore be approximately written as V i

E(y). Thus the wavefunction of an electron with energy
ε in the i th stripe can be written as

� i(x, y) =
∑

n

φn(y)
∑

α

di
nα[ai

αeiki
α (x−xi

0 ) + bi
αe−iki

α (x−xi
0 )], (2)

where φn(y) =
√

2
W sin nπy

W are the eigenstates of the wide 2DEGs with width W , x i
0 is the

reference point for the i th stripe along the x direction and can be chosen at the left edge of the
i th stripe, and ki

α = [2m∗(ε − Ei
α)/h̄2]1/2. The expansion coefficients, di

nα, can be obtained by
searching for eigenvalues Eα from the system,∑

m

[(
εm − Ei

α

)
δnm + 〈φn(y)|V i

E(y)|φm(y)〉] di
mα = 0, n = 1, 2, 3, . . . , (3)

where εm = h̄2

2m∗ (
πm
W )2. The coefficients, {ai

α} and {bi
α}, in equation (2) are determined by

the boundary condition of the problem. For simplicity, we will in the following denote the
coefficients, {ai

α} and {bi
α}, by vectors Ai and Bi . In the present work, these coefficients are

calculated by employing scattering matrices [21, 22] as follows. The incoming states, AL and
BR , and the outgoing states, AR and BL , in the left (L) and right (R) wide 2DEG regions are
related by the scattering matrix S(L, R),[

AR

BL

]
=

[
S11(L, R) S12(L, R)

S21(L, R) S22(L, R)

] [
AL

BR

]
. (4)

The coefficient vectors, Ai and Bi , in the i th stripe, can also be related to the coefficient vectors
of the incoming waves in the two 2DEG regions, AL and BR. To show this we employ the
scattering matrices S(L, i) and S(i, R) and write[

Ai

BL

]
=

[
S11(L, i) S12(L, i)
S21(L, i) S22(L, i)

] [
AL

Bi

]
,

[
AR

Bi

]
=

[
S11(i, R) S12(i, R)

S21(i, R) S22(i, R)

] [
Ai

BR

]
.

(5)

The above equations express the coupling of the electron wavefunction in the left 2DEG region
with the wavefunction in the i th stripe and the coupling of the wavefunction in the i th stripe
with that in the right 2DEG region, respectively. Solving for Ai and Bi from equation (5) gives

Ai = [1 − S12(L, i)S21(i, R)]−1[S11(L, i)AL + S12(L, i)S22(i, R)BR],
Bi = [1 − S21(i, R)S12(L, i)]−1[S21(i, R)S11(L, i)AL + S22(i, R)BR]. (6)

Since the coefficient vectors AL and BR are known from the boundary condition, equations (4)
and (6) imply that once the scattering matrices, S(L, i), S(i, R) and S(L, R), are found, all the
coefficient vectors, Ai and Bi , as well as AR and BL , required for a complete description of
the wavefunction of the electron incident from the left can be obtained. With the help of the
transfer matrices derived in [23] for such a planar system, all these scattering matrices can be
calculated on the basis of an iterative method reported in [22].
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For an electron injected into the system from the left in a state φm(y)eikm (x−xL
0 ) with energy

ε, the wavefunction of the electron in the two wide 2DEG regions can be written as

�L(x, y) = φm(y)eikm (x−xL
0 ) +

∑
n

φn(y)
∑

α

d L
nαbL

α e−ikL
α (x−xL

0 ),

� R(x, y) =
∑

n

φn(y)
∑

α

d R
nαa R

α eikR
α (x−xR

0 ).
(7)

Thus, the boundary condition imposed on the wavefunction of the electron is[
AL

BR

]
=

[
Im

0

]
, (8)

where Im is a unit vector with elements given by (Im)α = δαm . It is now straightforward
to calculate the coefficient vectors Ai and Bi , as well as AR and BL , and thus the entire
wavefunction, �m(x, y), of the electron by inserting this boundary condition (equation (8))
into equations (4) and (6).

The electron density and current density, associated with this single electron, in stripe i are
given by

ρi
m(x, y) = � i∗

m (x, y)� i
m(x, y), (9)

ji
m(x, y) = ieh̄

2m∗
[
� i∗

m (x, y)∇� i
m(x, y) − � i

m(x, y)∇� i∗
m (x, y)

]
. (10)

In the linear response regime, the total electron density, ρ i(x, y), and the total current density,
ji (x, y), are obtained by summing all the contributions from electrons incident from the left at
the Fermi energy EF,

ρi (x, y) ∼
M∑

m=1

ρi
m(x, y)/km, (11)

ji (x, y) ∼
M∑

m=1

ji
m(x, y)/km (12)

where the wavevector km = [2m∗(EF −εm)/h̄2]1/2 and M is the number of propagating modes,
for which km is real, found in the left wide 2DEG region. Here we note that in an experiment,
the electron transport properties (the conductance, charge density distribution, current flow, etc)
are usually measured under a small voltage δV applied over the device. Thus, at sufficiently
low temperature (zero temperature is assumed in this work), the measured transport quantities
contain the contributions from all the injected electrons from a wide 2DEG region in the energy
window [EF, EF + e|δV |]. To make our calculations under a condition relevant to experiment,
we need to take all these contributions into account. In the linear response regime, where the
applied voltage is sufficiently small (i.e., δV → 0), this can simply be achieved by multiplying
the contribution from each individual open mode in the left wide 2DEG region with the local
density of states (which is inversely proportional to the wavevector km) associated with that
open mode and then summing over the results obtained for all the open modes at energy EF.

The method presented above is formulated in a basis of infinite order and is exact.
However, equation (3) needs to be solved numerically by truncating n and m at a high transverse
level N . In the actual calculations we let N be as large as necessary to obtain a desired accuracy.
Also the method is numerically stable and is efficient for solving for the electron flow patterns
in devices with large dimensions and complicated structures. It should be noted that although
it is straightforward to calculate the current densities from equations (10) and (12), we will in
this work only present the results of calculations for the densities of electrons flowing from
the double slit. This is because our calculated current densities and electron densities show
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rather similar flow patterns in the system and also because it is the electron densities (electron
wavefunctions) which are measured in most SPM experiments.

3. Results and discussion

In this work, we are interested in the interference patterns of electrons propagating through the
double slit and, in particular, the effects of the modal structure formed in the narrow slits on the
interference patterns. As is shown in figure 1(a), the two identical slits used to model the double
slit have a width ws and a length Ls, and are separated to a distance of Ds. The single slit has
a width wf and a length L f and is placed in front of the double slit at a distance of Ld from
the double slit. In order to reduce the effect of scattering from the sharp geometrical corners
in the narrow opening slit region, each corner of the slits has been smoothed using a quarter
of a circle with a radius of Rs. In this work, the effective mass of electrons is assumed to be
m∗ = 0.067 me, which is appropriate to the 2DEG formed in a GaAs/AlGaAs heterostructure,
and the Fermi energy of the electrons in the 2DEG regions is set at EF = 8.6 meV.

Most of our calculations presented in this work have been made for the double slit with the
slit lengths Ls = 800 nm, the radius of the quarter-circle in each slit corner Rs = 200 nm, and
the slit spacing in the double slit Ds = 500 nm. Figure 1(b) shows the calculated conductance
of the double slit (without the presence of the single slit in front) as a function of the slit width
ws. Here it is clearly seen that the conductance is quantized in units of 2 × 2e2/h as expected1.
In the following, we study the interference patterns of the electrons in the device as shown
in figure 1(a) with different numbers of opened modes in the slits. We consider the cases of
slit width ws = 50, 75, 100 and 125 nm, corresponding to the cases with one, two, three and
four modes opened in the slits, respectively. The single slit for creation of a coherent electron
source is placed in a distance of Ld = 600 nm from the double slit. The single slit has a length
L f = 800 nm and again the radius of the quarter-circle in each slit corner Rs = 200 nm. In the
quantum conductance regime as studied in this work, the electron wave will pass through the
single slit via different lateral modes and therefore show characteristics of the modal structures
formed in the slit. As a result, the electron wavefunctions show a lobe or a multi-lobe flow
pattern. For interested readers, we include in the appendix the calculated coherent flow patterns
for the electrons propagating through the single slit with four different slit widths of wf = 50,
75, 100 and 125 nm, corresponding the cases with one, two, three, and four modes opened in
the slit.

Now we study the electron interference patterns of the double-slit device depicted in
figure 1(a). We first consider the devices which are symmetric with respect to the x axis.
Figure 2 shows the interference patterns of electrons flowing from the double slit in the device
with all the three slits having the same width. Figure 2(a) shows the calculated electron density
for the device with the slit widths ws = wf = 50 nm. In this case, only the first mode is
open for conduction in each slit. Since the electron flow from a slit in this mode only has one
lobe, the electron density seen at sufficiently distant position from the double slit shows the
famous Young’s double-slit fringe pattern: it has a peak in the middle (y = 0) and is symmetric
with respect to the middle peak. When the slit widths, ws and wf, are changed to 75 nm, both
the first and second modes are open for conduction in each slit (cf figure 1(b)). Figure 2(b)

1 The fine dips or oscillations seen at edges of staircases are due to the formation the longitudinal resonant states in the
slits; see, e.g., [24]. These dips or oscillations will disappear when the corners of the slits are made smooth enough. We
have in this work used quarter-circles to smooth the slit entrances and exits. As a result, most fine dips or oscillations
have been removed, except for those at the edges of staircases. However, these remaining fine dips will not affect our
results presented in this work, since we have intentionally chosen those parameters for which the conductance stays at
a deep plateau region in which no dips or oscillations are present.
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Figure 2. Density plots for electrons at energy EF = 8.6 meV passing through the double-slit
device as shown in figure 1(a) with the slit widths of (a) ws = wf = 50 nm, (b) ws = wf = 75 nm,
(c) ws = wf = 100 nm, and (d) ws = wf = 125 nm. The device parameters used in the calculations
for these plots are lateral width of the 2DEG regions W = 5 μm, slit lengths Ls = L f = 800 nm,
slit distance Ds = 500 nm, radius of quarter-circles in slit corners Rs = 200 nm, and distance
between the double slit and the single slit Ld = 600 nm. The electron density in each plot has been
normalized against its maximum value in the plot.

shows the electron interference pattern for this case. Since the angular pattern of the electron
flow from the second mode in a slit has two lobes, the interference pattern seen in figure 2(b)
has more complex features. A notable difference from the Young’s double-slit interference
pattern, as well as from the case for ws = wf = 50 nm, is that the interference pattern has a
dip in the middle. Also the intensity of the fringes seen in figure 2(b) is no longer decreased
monotonically from the middle toward the edges. These differences are evidence for the effects
of formation of the electron wave modal structure in the slits. When the slit widths, ws and wf,
are further increased, more and more modes will be opened for conduction in the slits and the
electron flow from the double slit generally shows a complex interference structure, as can be
seen in figure 2(c) (the case for three modes opened in each slit) or figure 2(d) (the case for four
modes opened in each slit). An interesting observation from the results shown in figures 2(a)–
(d) is that the interference pattern has a dip in the middle when an even number of modes are
opened for conduction in the slits.

Figure 3 shows the interference patterns of electron flow from the double slit in individual
modes. As in [4], these interference fringe patterns are obtained from the results for the total
electron flow as shown in figures 2(a)–(d) by subtracting the interference patterns for narrower
slit cases. For example, to obtain the interference pattern of electron flow only from the
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Figure 3. The same as figure 2 but for electron flow from individual modes in the slits. (a) is the
same as figure 2(a); (b) is for the density plot for electron flow from the second mode, obtained
by subtracting the result in figure 2(a) from the result in figure 2(b); (c) is for the density plot for
electron flow from the third mode, obtained by subtracting the result in figure 2(b) from the result
in figure 2(c), and finally (d) is for the density plot for electron flow from the fourth mode, obtained
by subtracting the result in figure 2(c) from the result in figure 2(d). The electron density in each
plot has been normalized against its maximum value in the plot.

third mode as shown in figure 3(c), the total electron flow pattern in figure 2(b) (including
the contributions of electron flow from the first and second modes) are subtracted from the
total electron flow in figure 2(c) (including the contributions of electron flow from all the first
three modes). A comparison with the total electron density plots in figure 2 reveals that the
interference pattern of electron flow from the double slit in an individual mode resembles the
corresponding interference pattern of the total electron flow well. This result implies that the
interference pattern of the total electron flow from the double slit at a given energy is dominated
by the interference of electron flow from the highest occupied mode in the slits. The reason
for this is as follows. The contribution of each open mode in the double slit to the electron
density in the total flow pattern is proportional to 1/kα , where kα is an effective wavenumber
of electrons in the double-slit mode α. A higher mode corresponds a smaller value of kα and
thus gives a larger contribution to the electron density in the total electron flow pattern. The
comparison also shows that the fringe patterns shown in figure 3 are, in general, sharper than
the total flow patterns as shown in figure 2.

As we have discussed above, the single slit introduced in front of the double slit plays an
essential role in the observation of sharp interference patterns of electron flow from the double
slit. To demonstrate this, we show in figures 4 and 5 the results of calculations for the patterns
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Figure 4. The same as figure 2 but for the density plots for electrons at energy EF = 8.6 meV
passing through the double-slit device without presence of the single slit in front. The slit width
assumed in the calculation is (a) ws = 50 nm, (b) ws = 75 nm, (c) ws = 100 nm, and
(d) ws = 125 nm. The other device parameters assumed are lateral width of the 2DEG regions
W = 5 μm, slit length Ls = 800 nm, slit distance Ds = 500 nm, and radius of quarter-circles in slit
corners Rs = 200 nm. The electron density in each plot has been normalized against its maximum
value in the plot.

of electron flow from a pure double slit (i.e., there is no single slit in the left side of the double
slit). In these calculations, all the structure parameters used for describing the double slit are
the same as in figures 2 and 3. Figures 4(a)–(d) show the total density distributions of electrons
for the double slit with the slit widths of ws = 50, 75, 100, and 125 nm, corresponding to the
cases with one, two, three and four modes opened in each slit, respectively. It is evident that
the total density distributions of electrons flowing from the sole double slit do not show clear
interference patterns, in strong contrast to the results of figure 2 where the calculations were
made when a single slit was placed in front of the double slit. These results of calculations
cast some doubt on the conclusions made from recent hot-electron double-slit interference
experiments by Furuya et al [20], where no single narrow source of coherent electrons was
actually employed in the experiments. Figures 5(a)–(d) show the patterns of the electron
flow from the double slit through individual modes in the slits, obtained in the same way as
in figures 3(a)–(d) by the subtraction procedure. Although weak, blurred, wide fringes are
visible in the density distribution patterns of electrons flowing from the double slit through
high index individual modes, the sharp, fine interference fringe patterns as found in figure 3 are
completely invisible in figure 5. Thus, employment of a single slit in front of the double slit is
essential for observation of a fine interference fringe pattern in Young’s double-slit experiments
for electrons.
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Figure 5. The same as figure 3 but for electron flow from individual modes in the same pure
double-slit structure as in figure 4. The electron density in each plot has been normalized against its
maximum value in the plot.

Because the role of the single slit placed in front of the double slit is to create a source of
coherent electrons incident on the double slit with similar initial conditions, the narrower the
employed single slit, the sharper the interference fringes of the double slit. However, due to
the wave nature of electrons, it is impossible to make the single slit infinitely narrow in width.
Figures 6 and 7 show the interference patterns of electrons flowing from the double slit for two
different widths of the single slit. Clearly, similar fine interference patterns as seen in figure 2
are found in both cases. The interference fringes are, however, found to be very different in
sharpness in the two cases: the fringe pattern is much sharper in the case where the width of
the front single slit is set at wf = 50 nm (figure 6) than in the case where the width of the
front single slit is set at wf = 125 nm (figure 7). The difference can be explained as follows.
At the width of wf = 125 nm, electrons with energy EF = 8.6 meV can propagate through
the front single slit through its four lowest modes (see the appendix). The interference patterns
of the double slit for electrons propagating through different single-slit modes are independent
and are, in general, different. Thus, the interference patterns found in figure 7 are the results
of a superposition of the four individual contributions and are therefore blurred. However, at
wf = 50 nm, only the lowest single-slit mode is open for the electron transmission at energy
EF = 8.6 meV. Thus the interference pattern of the double slit in figure 6 contains the sole
contribution from electrons that pass through the front single slit through its lowest mode.

It is seen, in figures 2, 3, 6, and 7, that the electron flow patterns are very different in the
regions with different distances from the double slit. For a better description of the electron flow
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Figure 6. Density plots for electrons at energy EF = 8.6 meV passing through the same double-slit
device as in figure 2 but for the width of the front single slit fixed at wf = 50 nm. The slit width
in the double slit is (a) ws = 50 nm, (b) ws = 75 nm, (c) ws = 100 nm, and (d) ws = 125 nm.
The other device parameters used in the calculations are the same as in figure 2 with W = 5 μm,
Ls = L f = 800 nm, Ds = 500 nm, Rs = 200 nm, and Ld = 600 nm. The electron density in each
plot has been normalized against its maximum value in the plot.

characteristics in different regions, we have made line plots for the electron density distributions
along the transverse direction at some selected detection positions. As an example, we show
in figure 8 the plots for the electron density distributions at four selected detection positions
for the patterns of the electron flow from individual modes as shown in figure 3. It is evident
that at a large value of x (the far-field regime), only the interference pattern for the case of
electron flow through the first mode in the double slit shows the regular, Young’s double-slit
interference pattern (figure 8(a)). The far-field interference patterns for the cases of electron
flow from higher modes in the double slit show complex interference structures. Note that
the very fast regular oscillations seen in the electron density distributions at large values of x
(figures 8(b)–(d)) arise from the finite lateral size (W = 5 μm) of the 2DEG region assumed
in the calculations. These oscillations gradually disappear when the lateral size W is further
increased. At x = 500 nm (a value in the near-field regime), the envelopes of the oscillated
electron density distributions show rather regular patterns: the envelope shows a double-peak
structure in the case of electron flow from the first mode in the double slit and a triple-peak
structure in the case of electron flow from a high index mode in the double slit. The electron
flow tends to focus on the central region in the near-field regime. In particular, a strong electron
density envelope peak is found in the central region in the case of electron flow from the second,
third, or fourth mode in the double slit (see figures 8(b)–(d)).
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Figure 7. The same as figure 6 but for the width of the front single slit fixed at wf = 125 nm. Also,
as in figure 6, the electron density in each plot has been normalized against its maximum value in
the plot.

In the results we have presented above, the single slit in front of the double slit has been
placed in such a way that the complete double-slit device is symmetric under reflection with
respect to the x axis. In experiments, it is hard to fabricate such a completely symmetric system.
Therefore it is interesting to know how the interference effects are influenced by symmetry
breaking in the system. In the following, we discuss, as an example, only the case when the
system symmetry is broken by misalignment of the single slit with respect to the central line of
the double slit (the x axis). Figure 9 shows the total density distributions of electrons flowing
from the same double-slit structure as in figure 2, but with a shift of the single slit along the y
direction by 50 nm. In this asymmetric device, the patterns of electron flow from the double
slit still show clear interference fringes and resemble the results presented in figure 2 well.
However, due to the breaking of reflection symmetry of the system, the wavefunction for an
electron flowing from the double slit is no longer symmetric or antisymmetric with respect to
the x axis (y = 0). Thus the interference fringe patterns of electron flow from the double slit
as shown in figure 9 do not have reflection symmetry. This is particularly clear in the cases of
electron flow from high index modes in the double slit (see figures 9(b)–(d)).

Finally, we study the dependence of the spacing of the interference fringes on the slit
distance Ds in the double slit (cf figure 1(a)). Figures 10(a) and (b) show the centre-to-centre
spatial separation, d , of adjacent fringes in the middle region of the interference patterns as
a function of Ds for the device as shown in figure 1(a) with the same structure parameters as
in figures 2(a) and (d) except for the varying slit distance Ds. Note that in these calculations,
the radius of the quarter-circle, Rs, used to smooth each slit corner is varied with varying Ds
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Figure 8. The same normalized electron densities for electron flow from (a) the first mode, (b) the
second mode, (c) the third mode, and (d) the fourth mode as in figure 3, but being plotted at four
selected detection distances (x values) from the double slit.

according to Rs = (Ds/2) − 50 nm and the slit lengths are varied as Ls = L f = Rs + 400 nm.
Note also that in figure 2(a), the wavefunctions of electrons have an even parity and the
interference pattern of the double slit has a bright fringe at y = 0. The spatial separation,
d , in this case is taken as the centre-to-centre distance of the bright fringe at y = 0 and one
of its neighbouring bright fringes. The results in figure 10 show that with increasing Ds, the
spatial separation of bright fringes, d , deceases as expected. However, in general, it is difficult
to extract a simple relation between the fringe spacing d and the slit distance Ds. This is
particularly true in the case with a large slit width for which the electron flow from the double
slit shows a complicate interference pattern due to the presence of a multi-lobe structure in
the flow from each slit. Nevertheless, we were able to conclude that in the near-field regime
(e.g., at x = 500 nm), the fringe spacing d of the interference pattern changes slowly with
varying Ds when compared with the results found in the far-field regime (see, e.g., the case at
x = 2000 nm).

4. Conclusions

In summary, we have theoretically studied the quantum interference behaviour of electron flow
from a double-slit device made from a semiconductor 2DEG system with the slit widths in
the quantum conductance regime. The device consists of a double slit and a single slit in
a configuration where the single slit is placed on the electron source side of the double slit.
On the basis of a scattering matrix method, the wavefunctions of electrons passing through
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Figure 9. Density plots for electrons at energy EF = 8.6 meV passing through the double-slit
device with the slit widths of (a) ws = wf = 50 nm, (b) ws = wf = 75 nm, (c) ws = wf = 100 nm,
and (d) ws = wf = 125 nm. The device parameters used in the calculations for these plots are the
same as in figure 2 except that the position of the single slit has been shifted by 50 nm along the
y direction. The electron density in each plot has been normalized against its maximum value in
the plot.

the double-slit structure are calculated. It is found that including a single slit between the
double slit and the source contact in the device is essential for the observation of interference
fringes of electron flow in a double-slit experiment with a 2DEG. When only the lowest mode
is open for conduction in the three individual slits, the interference patterns of electron flow
from the double slit resemble the results of a conventional Young’s double-slit experiment
well. When several modes are open for conduction in the individual slits, the interference
patterns of electron flow from the double slit are dominated by the interference of electrons
flowing through the highest open modes in the slits and, in general, show rather complex
structures. The characteristics of the interference patterns in the near- and far-field regimes
have also been discussed, as well as the dependence of the fringe spacing on the slit distance
in the double slit. In general, the fringe spacing decreases as the slit distance in the double
slit increases. However, it is difficult to extract a simple relation between the fringe spacing
and the slit distance, due to presence of lobe structures in the electron flow from the slits in
the quantum conductance regime. Clearly, it is interesting to extend our calculations to include
scattering in the 2DEG region on the collector side of the double slit and to study interference
phenomena from branched strands in the electron flow from the double slit. Another direction
of interest is including spin–orbit interaction in the calculations using the formalism recently
reported in [25] and studying its effect on interference patterns from the double slit. We expect



Coherent electron flow from a double slit with slit widths in the quantum conductance regime 11117

150 250 350 450 550

200

400

600

(a)

Ds(nm)

d(
nm

)

150 250 350 450 550

200

400

600

(b)

Ds(nm)

d(
nm

)

Figure 10. Centre-to-centre spatial separation, d, of adjacent fringes in the middle region of the
interference pattern as a function of the slit distance Ds for the device as in figure 2 with (a) the slit
widths ws = wf = 50 nm and (b) the slit widths ws = wf = 125 nm. The other device parameters
used in the calculations are the same as in figure 2. In each figure, we plot the spatial separation d
versus the slit distance Ds, calculated at x = 500 nm (circle), 1000 nm (down-triangle), 1500 nm
(up-triangle) and 2000 nm (diamond). The marks are the calculations, while the dashed lines are
polynomial fits to the data as guides for the eyes.

Figure A.1. Density plots for electrons at energy EF = 8.6 meV passing through a pure single slit,
which is the same as the one placed in front of the double slit in figure 1(a), with the slit width of (a)
wf = 50 nm, (b) wf = 75 nm, (c) wf = 100 nm, and (d) wf = 125 nm. The other device parameters
used in the calculations for these plots are lateral width of the 2DEG regions W = 5 μm, slit length
L f = 800 nm, and radius of quarter-circles in slit corners Rs = 200 nm. The electron density in
each plot has been normalized against its maximum value in the plot.
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Figure A.2. The same as figure A.1 but for electron flow from the single slit through (a) the first
slit mode, (b) the second slit mode, (c) the third slit mode, and (d) the fourth slit mode, obtained in
the same way as in figure 3 by a subtraction procedure. The electron density in each plot has been
normalized against its maximum value in the plot.

that our work will stimulate experimental efforts on the observation of interference phenomena
of electron flow from a double slit made from a semiconductor 2DEG system.
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Appendix

The front single slit in the double-slit device as shown in figure 1(a) plays an important role
in generating a high quality, sharp interference fringe pattern of the double slit. However,
in the quantum conductance regime, the electrons passing through the single slit show the
characteristics of the modal structures formed in the slit [4–6]. Namely, the electron wave
propagating through the single slit via a quantum mode does not emit from the opening with
a spatially uniform wave intensity profile, in contrast to what is described in classical wave
mechanics. For completeness and to give a general reader a better understanding of the effects
of a single slit in a double-slit experiment, we show in figures A.1 and A.2 the flow patterns of
the electrons passing through a single slit with different widths. Figure A.1 shows the density
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plots for electrons at energy EF = 8.6 meV passing through the same single slit as was shown
in figure 1(a) with widths of wf = 50, 75, 100, and 125 nm, corresponding to the situations
where one, two, three, and four modes are open for the electron transmission in the slit. It is
seen that for the slit with the width wf = 50 nm, the electron flow pattern is characterized by a
broad lobe. When the width of the single slit is increased to 75, 100, and 125 nm, weak multi-
lobe structures are visible in the density plots and the number of lobes seen in an electron flow
pattern is equal to the number of open modes in the slit. The multi-lobe electron flow structures
are more clearly seen in figure A.2, where the electron flows from the slit through individual
modes, obtained in the same way as for figure 3 by a subtraction procedure, are plotted.
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